Altered Pharmacokinetics of 1α,25-Dihydroxyvitamin D3 and 25-Hydroxyvitamin D3 in the Blood and Tissues of the 25-Hydroxyvitamin D-24-Hydroxylase (Cyp24a1 …

S Masuda, V Byford, A Arabian, Y Sakai… - …, 2005 - academic.oup.com
S Masuda, V Byford, A Arabian, Y Sakai, MB Demay, R St-Arnaud, G Jones
Endocrinology, 2005academic.oup.com
Abstract The 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) plays an important role in
regulating concentrations of both the precursor 25-hydroxyvitamin D3 [25 (OH) D3] and the
hormone 1α, 25-dihydroxyvitamin D3 [1α, 25 (OH) 2D3]. Previous studies suggest that
Cyp24a1-null mice cannot clear exogenous 1α, 25 (OH) 2D3 efficiently. Here, we examined
the metabolic clearance in Cyp24a1-null mice in vivo and in vitro using a physiological dose
of [1β-3H] 1α, 25 (OH) 2D3 or [26, 27-methyl-3H] 25 (OH) D3. Cyp24a1-null mice showed …
Abstract
The 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) plays an important role in regulating concentrations of both the precursor 25-hydroxyvitamin D3 [25(OH)D3] and the hormone 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. Previous studies suggest that Cyp24a1-null mice cannot clear exogenous 1α,25(OH)2D3 efficiently. Here, we examined the metabolic clearance in Cyp24a1-null mice in vivo and in vitro using a physiological dose of [1β-3H]1α,25(OH)2D3 or [26,27-methyl-3H]25(OH)D3. Cyp24a1-null mice showed difficulty in eliminating [1β-3H]1α,25(OH)2D3 from the bloodstream and tissues over a 96-h time course, whereas heterozygotic mice eliminated the hormone within 6–12 h, although there was clearance of labeled hormone into water-soluble products involving liver in both genotypes. RT-PCR showed that Cyp24a1-null mice have decreased expression of 25-hydroxyvitamin D-1α-hydroxylase that must play a role in their survival. After the administration of [26,27-methyl-3H]25(OH)D3, Cyp24a1-null mice showed higher [26,27-methyl-3H]25(OH)D3 levels and no [26,27-methyl-3H]24,25(OH)2D3 formation, whereas heterozygotic mice showed significant [26,27-methyl-3H]24,25(OH)2D3 production. Based upon in vitro experiments, keratinocytes from Cyp24a1-null mice fail to synthesize [1β-3H]calcitroic acid from [1β-3H]1α,25(OH)2D3 or [26,27-methyl-3H]24,25(OH)2D3 from [26,27-methyl-3H]25(OH)D3 as do control mice, confirming the target cell catabolic role of CYP24A1 in these processes. Finally, the role of vitamin D receptor (VDR) in the vitamin D catabolic cascade was examined using VDR-null mice. Keratinocytes from VDR-null mice failed to metabolize [1β-3H]1α,25(OH)2D3 confirming the importance of vitamin D-inducible, VDR-mediated, C24 oxidation pathway in target cells. These results suggest that the absence of CYP24A1 or VDR retards catabolism of 1α,25(OH)2D3 and 25(OH)D3, reinforcing the physiological importance of CYP24A1 in vitamin D homeostasis.
Oxford University Press