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Alarmins in health and disease
The alarmin family comprises structurally diverse and evolution-
arily unrelated multifunctional endogenous molecules that are pas-
sively released from necrotic cells upon infection or tissue injury or 
are rapidly secreted by stimulated leukocytes and epithelia. In the 
absence of injury or infection, alarmins play important intracellular 
roles (Table 1). However, once released extracellularly, alarmins pro-
mote activation of innate immune cells and recruitment and activa-
tion of antigen-presenting cells engaged in host defense and tissue 
repair through pattern recognition receptors such as the TLRs, many 
of which have a key role in the detection of pathogens (refs. 1–3 and 
Table 1). In health, inflammation is self-limiting and a vital part of 
the innate host defense. It occurs in response to sterile injury or infec-
tion and involves the recruitment of phagocytes to remove cell debris 
and microbes. This is followed by resolution, with the recruitment of 
other cell types, including stem and endothelial cells, to restore tissue 
homeostasis. As potent mediators of inflammation, alarmins play 
a fundamental role in the pathogenesis of a wide range of sterile or 
infection-induced immune and inflammatory disorders (4–6). Cru-
cially, their ability to enhance the adaptive immune response through 
their effects on antigen-presenting cells, including DCs, makes them 
a critical link between the innate and adaptive arms of the immune 
response (7). Hence, the alarmin family represents an intriguing ther-
apeutic target, not only to dampen inflammation but also to uncou-
ple the innate and adaptive immune responses in chronic pathologies, 
including autoimmune disorders. Furthermore, alarmins may serve 
as useful diagnostic and prognostic biomarkers in inflammatory dis-
orders. While there is now a rapidly growing list of alarmins in the lit-
erature, the best characterized in health and disease are high-mobility 
group protein B1 (HMGB1), S100 proteins, and heat shock proteins 
(HSPs). In this Review, we will focus on these alarmins, as they have 
the clearest and most tangible clinical translational potential to date.

Modulation of the alarmin response  
to suppress inflammation
Dysregulation of inflammation underlies the pathophysiological 
process in many immune and inflammatory disorders. The iden-

tification of proinflammatory cytokines, in particular TNF-α, as a 
therapeutic target in the 1990s heralded a paradigm shift that led 
to impressive clinical benefits, most notably in patients suffering 
from RA (8). Unfortunately, cytokine blockade is not effective in a 
significant proportion of patients (9) and has been disappointing 
in the treatment of patients with acute inflammatory disorders, 
such as trauma-induced systemic inflammatory response syn-
drome (SIRS) or sepsis (10). The recent identification of alarmins 
as crucial mediators of the inflammatory processes in these dis-
orders and the observation that their release is accompanied by 
an upregulation of their receptor suggests the alarmin signaling 
pathway as an alternative target (Figure 1).

Acute disorders
SIRS and sepsis. Severe trauma remains the most common cause of 
death under the age of 45 years. There is a biphasic distribution 
of mortality, with the initial peak corresponding to the “first hit,” 
such as severe injury or hemorrhagic shock. This triggers the host 
innate immune system to mount an immediate inflammatory 
response, the magnitude of which depends on the severity of the 
injuries. If the patient survives, this systemic inflammation is fur-
ther augmented by a “second hit,” such as ischemia/reperfusion, 
surgical interventions, and opportunistic infections, accounting 
for the subsequent peak in mortality (11). The resultant “cytokine 
storm,” which describes the overwhelming and sustained release of 
pro/anti-inflammatory mediators, including TNF-α, IL-1β, IL-6, 
and IL-10, is responsible for organ dysfunction as well as increased 
susceptibility to sepsis (12–14). Indeed, prognosis correlates with 
circulating levels of biomarkers of systemic inflammation, such as 
IL-6 and C-reactive protein (CRP).

The prospect of treating polytrauma and sepsis as an inflamma-
tory and immunological disease by immunomodulation remains 
unfulfilled (10, 15). Strategies involving blockade of cytokines and 
their receptors were promising in the preclinical setting, but disap-
pointed in clinical trials (10, 16), perhaps in part due to the very 
early release of TNF-α precluding timely intervention. Currently, 
there is no FDA-approved agent for the treatment of SIRS or sepsis 
after activated droterecogin alfa, the recombinant form of human 
activated protein C, was recalled by the FDA in 2011.

In their role as proinflammatory mediators, alarmins provide 
valuable insights into the regulation of traumatic inflammation 
and the pathogenesis of SIRS and related conditions, including 
sepsis (17), which lead to multiorgan failure and death in up to 
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60% of patients (18). The best-characterized alarmin in this con-
text is HMGB1. It is rapidly released into the circulation upon 
severe mechanical trauma (19) and in related conditions as well as 
sepsis (6). This is associated with a devastating and self-injurious 
innate immune response. HMGB1 levels are also elevated in other 
life-threatening conditions associated with acute inflammation, 
including stroke and acute myocardial infarction (19–21).

In sterile injury, HMGB1 is released as an early mediator that 
activates the later release of TNF-α and other cytokines, and in ani-
mals systemic administration of HMGB1 is lethal (22). Numerous 
animals studies have shown that inhibition of HMGB1 with either 
neutralizing antibody or the recombinant antagonists Box A  
or N-terminal domain of thrombomodulin (23) is beneficial in 
hemorrhagic shock (24, 25), ischemia/reperfusion (26, 27), acute 
lung (28, 29), myocardial (30), and cerebral ischemic injury (31, 
32). By contrast, HMGB1 appears to be a late mediator in sepsis 
(6, 22, 33), providing a clinically relevant time frame for pharma-
cological intervention by HMGB1 antagonism, and it has been 
effective in preclinical models of sepsis (22, 25, 33, 34). Moreover, 
the presence of autoantibodies to HMGB1 in sepsis is associated 
with a favorable outcome in critically ill patients (35). Another 

member of the HMGB family, HMGN1, has also recently been 
identified as a novel alarmin that is critical for lipopolysaccha-
ride-induced immune responses (36).

S100A8 and S100A9, the most abundant cytoplasmic proteins of 
neutrophils and monocytes, are also mediators of inflammation (4). 
S100A8/S100A9 complexes are released during activation of phago-
cytes and mediate their effects via TLR4, leading to the production 
of TNF-α and other cytokines (37). Deficiency in these proteins con-
ferred a survival advantage in models of sepsis (37, 38), and blockade 
of S100A8 and S100A9 suppressed LPS-induced proinflammatory 
activities (39). Importantly, S100A8/S100A9 levels were elevated on 
exposure to minimal amounts of LPS. Levels were also increased in 
septic patients and inversely correlated with survival (40).

An alternative strategy to targeting the upstream regulators of 
acute inflammation would be to target the pathways that perpet-
uate the inflammatory process, thereby preventing the “second 
hit” (41). For instance, TLR4 and receptor for advanced glycation 
end products (RAGE) have been shown to perpetuate the innate 
inflammatory response in septic shock (42), and their inhibition 
offered protection in animal studies (34). However, total aboli-
tion of the response may be counterproductive, as many microbial 
products share pattern recognition receptors such as TLR4 with 
alarmins, and inhibition may predispose the patient to infection. 
Therefore, targeting the alarmins directly would avoid the suscep-
tibility to sepsis normally associated with immunosuppressive 
therapies. In addition, it would be helpful to develop biomarkers 
to identify those patients who would benefit from immunomodu-
latory therapy (10). Thus far, the efficacy of targeting the alarmin/
receptor axis remains to be validated in controlled clinical trials.

Chronic and autoimmune disorders
It is now widely accepted that alarmins play a key role in the patho-
genesis of inflammatory diseases (refs. 43, 44, and Table 1). They 
not only initiate but also amplify and sustain the inflammatory 
processes. Alarmins recruit immature DCs, which take up antigens 
and home to secondary lymphoid organs, where they present anti-
genic epitopes to naive T cells, resulting in the induction of the 
adaptive immune response (45–47). Persistent release of alarmins 
may lead to upregulation of ectopic MHC type I and II expression 
and presentation of previously unencountered antigens, as well as 
proliferation of antigen-specific T lymphocytes, thus preventing 
their activation-dependent apoptosis and promoting their polar-
ization toward a Th1 phenotype. The overall effect is to drive a local 
hyperinflammatory environment (Figure 2). More recent data sug-
gest that alarmins may also be able to direct commitment toward a 
Th2, Th7, or regulatory T cell fate (44).

S100A8, S100A9, and S100A12 in humans are highly expressed 
by phagocytes within the affected joints in inflammatory arthri-
tis (48–50). They activate the endothelium; recruit and stimulate 
immune cells such as macrophages to produce proinflammatory 
cytokines, including TNF-α and IL-1β; and demonstrate cytotoxic 
effects, leading to tissue destruction (51–53). They also appear to 
be essential in the development of autoreactive CD8+ T cells and 
systemic immunity (54). Strategies that target the proinflamma-
tory properties of S100 proteins may therefore provide a novel 
approach for immunotherapy upstream of TNF-α and NF-κB 
activation, as illustrated by animal studies of hypersensitivity and 
chronic bowel inflammation (41). However, unlike S100 proteins, 
HMGB1 involvement appears to be independent of TNF-α (55). 
Anti–TNF-α therapy had no effect on HMGB1 expression (56), 

Figure 1
Alarmin pathway as potential therapeutic target in the innate inflam-
matory cascade. The upstream alarmin signaling pathways are 
potential therapeutic targets for immunomodulation in both acute 
and chronic inflammatory diseases. This has been achieved in ani-
mal models by directly targeting the alarmins using antibodies or 
competitive inhibitors, e.g., Box A (HMGB1), or by targeting the pat-
tern recognition receptors (PRR) with antibodies or soluble decoy 
receptors. The convergence of S100 proteins and HMGB1 onto their 
receptors may be a rate-limiting step in this pathway and hence rep-
resents an attractive therapeutic target. Downstream cytokine block-
ade, including of TNF-α and IL-6, is used clinically in the treatment of 
chronic inflammatory diseases such as RA and inflammatory bowel 
disease, but remains ineffective in a significant proportion of patients. 
Cytokine blockade has been notably unsuccessful in patients with 
acute inflammatory disorders.
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but anti-HMGB1 antibodies and the antagonist Box A successfully  
inhibited the development of synovial inflammation and joint 
swelling in animal models of arthritis (55, 57, 58). Furthermore, 
binding of HMGB1 to other endogenous partners such as nucleo-
somes appears to break immunological tolerance and contribute 
to the pathogenesis of autoimmunity (59). Therefore, alarmins are 
attractive targets in RA and other chronic inflammatory disorders, 
especially for patients who do not respond to anti–TNF-α therapy.

In contrast, members of the HSP family, in particular HSP60 and 
HSP70, have been identified as alarmins whose upregulation may 
actually be beneficial to patients with inflammatory arthritis (60). 
HSP60 induces a subtype of regulatory T cells that suppress proin-
flammatory T cells (61–64). Transfer of these HSP-specific regula-
tory T cells inhibited inflammation in animal models of arthritis 
(60, 62). A recent phase II clinical trial yielded promising results 
(65, 66). This strategy illustrates how targeting the upstream com-
ponents of the inflammatory cascade that leads to pathological 
cytokine production may offer a more effective strategy.

Cancer
Chronic inflammation and necrotic cell death are important 
features of tumorigenesis (67), and alarmins are upregulated in 
a number of cancers (68–73). The S100A8/S100A9 proteins pro-
mote proliferation and survival of tumor cells in vitro (74, 75), 
and upregulation of S100A9 in myeloid precursors results in the 
accumulation of cells that suppress T cell proliferation and enable 
immune evasion (76). S100A8/S100A9 have also been found to 
promote tumor spread (76–78). Anti–carboxylated glycan antibod-
ies used to inhibit S100 protein-N-glycan binding reduced chronic 
inflammation and tumorigenesis in an in vivo model of colitis-
associated carcinogenesis (75).

Like the S100 proteins, HMGB1 has both intra- and extra-
cellular roles in carcinogenesis (79) and tumor spread (80–83), 
probably through its ability to promote cell migration (51) and 
angiogenesis (84). Members of the S100 family interact with 
cytoskeletal elements, including microtubules and actin, leading 

to increased cellular motility and invasion (85, 86). Upregulation 
of HMGB1 expression has been found in melanoma and cancers 
of the prostate, pancreas, and breast (80, 87, 88) and is associated 
with invasion and metastasis. Blockade of HMGB1 and RAGE 
suppressed tumor growth and metastasis in murine models of 
lung and colon cancer (79, 89).

Other alarmins implicated in the promotion of cancer include 
defensins and cathelicidins. Defensins are a family of cysteine-
rich, cationic peptides produced by cells involved in host defense 
against microbial infections. Expression of some defensins is 
constitutive, whereas for others it is regulated by damage-associ-
ated molecular patterns (DAMPs), cytokines, and growth factors 
in a tissue-specific manner. Human β-defensin–4 (DEFB4), the 
homolog of murine Defb29 that has been shown to have pro-
angiogenic and protumorigenic functions, is upregulated sev-
en-fold in stage III compared with stage I tumors (90). Human 
cationic antimicrobial protein 18 (hCAP-18) is the only known 
member of the cathelicidin family in humans. The active peptide 
LL-37 is overexpressed in breast, lung, and ovarian tumors, prob-
ably functioning as an autocrine survival factor (91–93). It may 
also promote tumor growth through angiogenesis and recruit-
ment of CD45+ cells (69).

Paradoxically, alarmins also display antitumor characteristics. 
Dying tumor cells following chemotherapy and radiotherapy 
release HMGB1, which can induce the maturation of DCs via 
TLR2 and TLR4 to promote a cytotoxic T lymphocyte response 
through cross-presentation of tumor antigens (94–96). Various 
defensins have been found to have tumor suppressor properties 
(97–99) and are significantly downregulated in various carcino-
mas, including DEFB1 in renal cell and prostate carcinomas and 
DEFB4A and α-defensin HNP-2 in cervical squamous cell carci-
nomas. Furthermore, although data on the role of α-defensins in 
cancer biology are currently lacking, they may be antiangiogenic, 
acting by disrupting fibronectin signaling via the α5β1 integrin 
(100). The apparently contradictory role of alarmins in cancers 
requires further investigation.

Figure 2
Induction of chronic and autoimmune inflammation by alarmins by upregulating the adaptive immune response. Alarmins recruit immature DCs 
and induce their functional maturation, leading them to take up antigens and home to secondary lymphoid organs. Here, they present antigenic 
epitopes to naive T cells, driving Th1 T cell polarization and inducing an adaptive immune response. Persistent release of alarmins upregulates 
ectopic MHC type I and II expression and presentation of previously unencountered antigens as well as uncontrolled proliferation of T cells, driv-
ing a hyper-inflammatory environment. Adapted with permission from Immunological Reviews (7).
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Alarmins as biomarkers
Similar to inflammatory biomarkers such as CRP, erythrocyte 
sedimentation rate (ESR), and IL-6, the levels of the S100 proteins 
correlate with disease activity in a number of inflammatory con-
ditions (Table 2 and refs. 51, 101–103). However, S100 proteins 
show important advantages over traditional clinical or laboratory 
markers for specific indications, probably due to their local expres-
sion and release in direct response to tissue damage. Serum levels 
of S100A8/S100A9 were found to correlate better with disease 
activity and joint destruction in various inflammatory arthritides 
than classical markers of inflammation (104–106). In addition, 
serum S100A8/S100A9 and S100A12 can precisely stage severity 
and response to therapy (107) as well as predicting relapse (108, 
109) and clinical progression, such as the development of erosive 
disease (110) and radiographic progression of joint damage (111). 
The suitability of both S100 proteins and HMGB1 as biomark-
ers for acute systemic inflammatory conditions such as sepsis and 
following major surgery is also currently under investigation (e.g., 
ref. 112). Last but not least, S100A8/S100A9 is the only parameter 
so far that allows early and reliable diagnosis of systemic onset 
juvenile idiopathic arthritis (SOJIA) and differentiates from infec-
tion, which is critical in instigating the appropriate treatment (50).

Alarmins as regenerative therapy
The effects of alarmins, whether beneficial or detrimental, appear 
to depend on timing of release, dose, and context. Excessive and 
chronic presence of alarmins and unremitting alarmin-induced 
events exacerbate injury, but when expressed in a transient and 
self-limited manner upon injury and acute inflammation, they 
mediate repair (113). This dual role is exemplified by the proin-
flammatory cytokine TNF-α. While sustained upregulation has 
a destructive role in many inflammatory conditions, TNF-α also 
acts as a growth factor for myelin-producing cells (114), differenti-
ation factor for mesenchymal stem cells (115), and potential thera-
peutic in the infarcted myocardium (116) or bone fractures (117).

The regenerative role of extracellular HMGB1 is largely medi-
ated by its chemoattractant effects (84, 118–121) as well as its abil-
ity to promote cell proliferation (120, 122) and neo-angiogenesis 
(84, 120, 121). The β-defensin family and cathelicidins also exhibit 
proangiogenic (90), chemotactic, and proliferative properties (123, 
124). Thus far, research on the use of alarmins in regenerative ther-
apy is limited to preclinical studies, the greatest challenge being to 
understand how to enhance the regenerative processes in postna-
tal human tissues, where most cells are terminally differentiated 
and tissues heal with fibrosis following injury.

Exogenous application of alarmins has shown promise in cuta-
neous wounds. Skin wound repair is problematic in diabetes melli-
tus due to a dysregulated inflammatory response compounded by 

an increased microbial load, excessive protease activity, and vascu-
lar compromise (125). The antimicrobial alarmins are particularly 
attractive for cutaneous wound healing due to their additional 
antimicrobial activities. The pre-form hCAP18 is upregulated 
in human skin upon wounding, but its levels are low in chronic 
ulcers. Moreover, antibodies against LL-37 inhibited re-epitheli-
alization (126). Human DEFB3 expression through viral trans-
fection led to accelerated wound closure in Staphylococcus aureus–
infected diabetic wounds in a pig model (127). HMGB1 expression 
is reduced in diabetic skin (125). Topical application of HMGB1 
to wounds accelerated healing in diabetic mice but not normo-
glycemic mice, whereas topical Box A impaired wound healing in 
normoglycemic mice, suggesting that the latter may already have 
optimal levels of HMGB1 (125). S100A8 and S100A9 also appear 
to promote skin wound healing (128), and wound fluid from non-
diabetic patients with non-healing venous leg ulcers showed that 
S100A8 and S100A9 were significantly reduced (129).

The use of exogenous alarmins to recruit and induce prolifera-
tion and differentiation of resident stem cells to enhance wound 
healing was demonstrated initially in a murine model of myocar-
dial infarction (122, 130). Local administration of HMGB1 led 
to improved structural and functional outcomes after infarction 
(131). Furthermore, cardiac-specific overexpression of HMGB1 
conferred significant protection against tissue damage and was 
associated with improved cardiac function (132), while anti-
HMGB1 antibodies exacerbated injury (133).

Despite the evidence that alarmins promote tissue homeostasis, 
there are also data suggesting the contrary. For instance, although 
HMGB1 is a potent neurotrophic mediator, it also contributes to 
neuronal cell death in cerebral ischemia (32), and downregula-
tion conferred significant protection (31, 32, 134). Activation of 
proinflammatory pathways by HMGB1 also exacerbated myo-
cardial injury. Serum HMGB1 levels are elevated in patients with 
myocardial infarction and correlate with poor clinical outcomes 
(21). Treatment with HMGB1 inhibitor, Box A, significantly 
reduced infarct size and tissue damage in an ischemia/reperfu-
sion injury model of the murine heart, and systemically adminis-
tered rHMGB1 increased the severity of damage (30). While these 
findings appear to conflict with other studies that suggest that 
exogenous HMGB1 promoted cardiac regeneration (30, 122), this 
discrepancy may be explained by the low dose of HMGB1 being 
administered during a critical time window when its expression 
was low in the latter studies.

The harmful role of alarmins is particularly evident in chronic  
conditions. For example, activated macrophages promote destruc-
tion and impair regeneration via secretion of S100A8 and S100A9 
in inflammatory muscle diseases (135), and blockade of RAGE 
restores effective cutaneous wound healing in diabetic mice (136). 

Table 2
Alarmins as biomarkers

Alarmin Condition type Refs.
S100A8, A9, A12 Sepsis, autoimmune (RA, JIA, psoriasis, etc.), respiratory (ARDS, cystic fibrosis),  S44, S54, S59, S73, S83–S94
 vascular (Kawasaki disease), gastrointestinal (IBD), neurological (MS)
S100B Traumatic brain injury S73
HMGB1 Sepsis, trauma, acute coronary syndrome, solid organ transplantation S10, S18, S95–S99

ARDS, acute respiratory distress syndrome; JIA, juvenile idiopathic arthritis.
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Comparison of acute and chronic wounds in humans identified 
elevated levels of S100A8 and S100A9 from the exudate of non-
healing wounds (137). However, this may again be attributed to 
a dose-dependent effect: for example, low doses of S100B have 
been found to promote neurite outgrowth, whereas high doses 
led to apoptosis (138, 139).

Challenges and future directions
The therapeutic potential for immunomodulation by targeting 
alarmins and their signaling pathways appears promising and 
needs to be tested in clinical trials. However, there are several key 
issues that remain to be addressed.

First, it remains unclear whether there exists a hierarchy of dom-
inance in the inflammatory effects of alarmins. For example, both 
HMGB1 and S100 proteins have been shown to be critical inflam-
matory mediators in RA, but which is the master regulator, and 
how do we decide which to target?

Second is the practical issue of how to inhibit alarmins in inflam-
matory conditions. While neutralizing antibodies or antagonists 
have been successful in experimental models, effective blockade of 
their proinflammatory activities clinically may prove challenging 
given the high extracellular concentrations encountered at sites of 
inflammation, such as in the synovial joints. An approach that tar-
gets the steps that are rate limiting may prove more effective — for 
example, inhibition of the S100A8/S100AA9-dependent transen-
dothelial leukocyte migration by blocking S100-N-glycan binding 
to endothelial cells (140, 141) or inhibition of the active release of 
S100A8/S100A9 by selectively targeting the “alternative pathway” 
in phagocytes. Furthermore, the concomitant release of multiple 
alarmins, all of which appear to drive and perpetuate inflamma-
tion, presents a challenge, as their inhibition may lead to differ-
ential effects, as exemplified by the beneficial effects of S100A8/
S100A9 and HMGB1 inhibition versus that of HSP upregulation 
in inflammatory arthritis. Furthermore, the convergence of alarm-
ins on pattern recognition receptors, for example S100A8/S100A9 
and HMGB1 on TLR4 and RAGE, may mean that inhibitors of 
these receptors or their downstream intracellular signaling cas-
cades may represent a more efficient approach (refs. 142–144 and 
Figure 2). However, a potential drawback of this approach is that 
many microbial products share patterns recognition receptors 
such as TLR4, and hence therapeutic approaches directed against 
the receptors may increase the risk of infection.

The third and greatest challenge concerns the issue of balance. 
Like many signaling molecules, alarmins exhibit both harmful 
and beneficial effects within the same disease context. While 
dampening of inflammation may be desirable in certain patho-

logical contexts, total abolition of the host defense is detrimen-
tal, leaving the patient susceptible to opportunistic infections and 
tumorigenesis as well as impairing repair and remodeling path-
ways. Conversely, the alarmin signaling axis can be manipulated 
to activate transient and self-limited inflammation and pathways 
that orchestrate tissue homeostasis. This is likely to be achieved 
by a better understanding of how the microenvironment and dos-
age contribute to the net effects of alarmins. For example, it has 
been found that low doses of S100B induce trophic effects in neu-
rites, whereas high doses induce apoptosis (138). Furthermore, we 
must understand how to clinically modulate the local environ-
ment so as to activate the innate protective pathways that initiate 
regenerative and repair processes while downregulating the self-
injurious pathways that inhibit repair and drive excessive and del-
eterious cytokine release. An area that deserves particular atten-
tion is the mechanism by which alarmins mediate the interaction 
between alarmin-stimulated DCs and tissue-repair macrophages, 
as this would offer the prospect of a rational, mechanism-based 
approach to promote wound repair.

The translational potential of alarmins and their signaling path-
ways is not restricted to the clinical conditions mentioned in this 
Review. For example, the immunological adjuvant activity of all 
alarmins and antimicrobial properties of many also mean that 
they have therapeutic potential in the development of therapies 
and vaccines against viruses, fungi, and cancer (145–147). How-
ever, this is relatively new territory, and such advances are more 
distant on the translational horizon.

Over the past century, tremendous strides have been made in 
understanding the immune system, leading to significant transla-
tional successes, including the development of immunosuppres-
sive drugs in the field of organ transplantation (148) and, more 
recently, biologic therapies, including anti–TNF-α therapy in the 
treatment of RA and other chronic autoimmune conditions (149). 
Further understanding of apparently conflicting roles of alarmins 
in inflammation and repair is beginning to yield novel approaches 
for translation to the clinical arena.
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