Supplementary Materials

CFTR-rich ionocytes mediate chloride absorption across airway epithelia

Lei Lei¹, Soumba Traore¹, Guillermo S. Romano Ibarra², Philip H. Karp^{2,3}, Tayyab Rehman^{2†}, David K. Meyerholz⁴, Joseph Zabner², David A. Stoltz^{2,5,6}, Patrick L. Sinn^{1,7}, Michael J. Welsh^{2,3,6}, Paul B. McCray Jr.,^{1,7*} and Ian M. Thornell^{2*}

¹Stead Family Department of Pediatrics and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
²Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA;
³Howard Hughes Medical Institute, University of Iowa, Iowa City, USA;
⁴Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA;
⁵Department of Biomedical Engineering, University of Iowa, Iowa City, USA;
⁶Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA;
⁷Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA;

[†]Present address: Department of Internal Medicine, University of Michigan, Ann Arbor, USA

*These authors contributed equally to this work.

Address correspondence to:

Ian M. Thornell 169 Newton Road 6332 PBDB Iowa City, IA 52242 USA Phone: (319) 335-7574 Email: ian-thornell@uiowa.edu Paul B. McCray Jr. 169 Newton Road 6320 PBDB Iowa City, IA 52242 USA Phone: (319) 356-1828 Email: paul-mccray@uiowa.edu

Conflict of Interest Statement: The authors have declared that no conflict of interest exists.

Target	Fold-change from control	<i>P</i> value
FOXI1	441.5 ± 101.4	0.0032
CFTR	7.7 ± 1.7	0.0045
BSND	116.7 ± 30.3	0.0047
CLCNKA	1.3 ±0.6	0.3937
CLCNKB	20.4 ± 5.4	0.0056
NGFR	2.9 ± 1.2	0.0551
ASCL3	43.4 ± 12.5	0.0065
RARRES2	5.5 ± 3.4	0.0763
ATP6V0D2	244.0 ± 38.2	0.0010
ATP6V0B	2.8 ± 2.0	0.1824
ATP6V1B1	4.0 ± 2.0	0.0554
TMPRSS11E	44.9 ± 11.3	0.0044
CD24	2.1 ± 0.3	0.0069
PPARG	1.9 ± 0.6	0.0570
FOXI2	4.0 ± 1.3	0.1012

Supplemental Table 1 RT-qPCR of ionocyte transcripts for FOXI1-OE vs. control 1

epithelia. Each FOXI-OE sample represents the fold-change from its donor-matched control

2 3 4 epithelia. n = 4 human donors. Error represents standard deviation of the mean. P values were

obtained using the one-sample *t* test with a hypothetical fold-change of 1.

5

Guide					
Target	Exon	Guide 1	Guide 2	Deletion Length	
FOXI1	1	CATAGTAGAGGTTCATCTCGGGG	ACAACAAGAGCAAGGCCGGCTGG	412 base pairs	
BSND	1	CCAGCACAATGAAGCCGATCCGG	TAGAAGGTGCCGTAGACCTGGGG	70 base pairs	
PCR Primers					
Target		Forward	Reverse	Ref ID	
FOXI1		5'-TCTAGCATGTCATTAGTGGGGACCT	5'-TGGAGATGCAGATGAATCGTAAT	NM_012188.5	
BSND		5'-TCTCTCCCTGTGTAAGCCTGT	5'-GGGGTCAGCGCTCATTAGCT	NM_057176.3	

1 Supplemental Table 2 Guide RNA and qPCR primers used to evaluate efficiency. The upper

2 portion of the table lists our guide sequences used to disrupt target genes and their predicted base

3 pair deletion length. The lower portion of the table lists our primers pairs used for genomic

4 PCRs.

Target	Guide	Benchling Scores		inDelphi Scores	
		On Target	Off Target	Precision Score (Percentile)	Frameshift Frequency (Percentile)
FOX11	1	60.9	86.4	93.9	84.3
	2	55.7	68.9	97.8	88.8
BSND	1	48.2	84.0	98.4	75.1
	2	65.9	79.5	79.3	85.3

1

Supplemental Table 3 Scores for guide RNAs used in this study. The table lists scores for guide sequences first obtained using Benchling then verified using inDelphi. References for the 2 3 Benchling and inDelphi algorithms are provided within Methods.

4

Supplemental Table 4					
Target	Forward	Reverse	Ref ID		
RARRES2	5'-GAGGGACTGGAAGAAACCCGA	5'-CTGTCCAGGGAAGTAGAAGCTGT	NM_002889.4		
ASCL3	5'-GGACAACAGAGGCAACTCTAGT	5'-AGGGGCAGGGTTCACTGTAAT	NM_020646.3		
ATP6V0D2	5'-TCTGATCGAAACGCCATTAGC	5'-CTTCTTTGCTCAATTCAGTGCC	NM_152565.1		
ATP6V0B	5'-CCATCGGAACTACCATGCAGG	5'-TCCACAGAAGAGGTTAGACAGG	NM_004047.5		
ATP6V1B1	5'-CAAGGCGATTGTTCAGGTGTT	5'-TCCCCTGTAAATTCGCAAGTG	NM_001692.4		
FOXI1	5'-GAACTCCATCCGCCACAACC	5'-GGCTGTGCTAGAGGAAACATCT	NM_012188.5		
CLCNKB	5'-GTGGGCATAGTGCGAAGGG	5'-CAAAGAGGTTGTGTGCCTCAT	NM_001165945.2		
TMPRSS11E	5'-CAGTGGGATGGGAGTCATCG	5'-CTGGCAGGGTTCTTATATGTTGT	NM_014058.4		
CFTR	5'-AGTGGAGGAAAGCCTTTGGAGT	5'-ACAGATCTGAGCCCAACCTCA	NM_000492.4		
CLCNKA	5'-ACCCTGACGCTATTCTCAGAG	5'-CGATGTCACGAAGAGGGACTG	NM_004070.4		
BSND	5'-GGAAAGACGCCTAACTCAGAGC	5'-CCTCCCTGTCATGTGGAGATG	NM_057176.3		
TMEM61	5'-CACCCACGGAGTATCCGGT	5'-CACAGTGAGGTAGTACAGGTCT	NM_182532.3		
CD24	5'-CTCCTACCCACGCAGATTTATTC	5'-AGAGTGAGACCACGAAGAGAC	NM_013230.3		
NGFR	5'-CCGTTGGATTACACGGTCCAC	5'-TGAAGGCTATGTAGGCCACAA	NM_002507.4		
PPARG	5'-ACCAAAGTGCAATCAAAGTGGA	5'-ATGAGGGAGTTGGAAGGCTCT	NM_001354668.2		
FOXI2	5'-CTGGCGGGCGACTTTTCTT	5'-GGGAGGGGTTAAGGGTCTG	NM_207426.3		

1 2 Supplemental Table 4 RT-qPCR primers used in this study.

Control

1 Supplemental Figure 1 Example flow cytometry analysis for Figure 1, A and B. Epithelia

- 2 were transduced with a lentiviral vector expressing either GFP or a bicistronic construct
- 3 expressing FOXI1 and GFP to generate and label ionocytes (FOXI1-OE), or they were
- 4 electroporated with CRISPR/Cas9 and guide RNAs (gRNA) targeting FOXII (gFOXII) to
- 5 decrease ionocyte abundance. Cells were gated by light intensities detected by a flow cytometer.
- 6 (A) Example Figure 1A-type experiments with FOXI-OE epithelia and controls. The gating
- 7 scheme is shown from left to right. Side scatter height (SSC-H) vs. forward scatter height (FSC-
- 8 H) was used to select for large and granular cells. FSC-width (FSC-W) vs. FSC-H was used to
- 9 exclude cellular debris and clumping. Barttin was detected within the selected population. (B)
- 10 Example Figure 1B-type experiments for gFOXI1 epithelia and controls. The first 2 gates are as
- 11 described for Panel A. Then, cells were gated for intact plasma membranes, then barttin. CF
- 12 epithelia (Figure 2, A and B) underwent identical gating.

- 1 Supplemental Figure 2 NKCC1 does not influence liquid absorption rates. (A) Confocal
- 2 images of human airway epithelia. The image shows barttin (white), NKCC1 (red), and nuclei
- 3 (blue); scale bars = $10 \,\mu$ m. (B) Epithelia were transduced with a lentiviral vector expressing
- 4 either GFP or a bicistronic construct expressing FOXI1 and GFP to generate and label ionocytes
- 5 (FOXI1 OE), then liquid absorption rates were obtained with 100 μ M bumetanide or DMSO in
- 6 the basolateral solution; n = 6 human donors. Graph depicts mean \pm standard deviation, and
- Šídák-corrected *P* values obtained from a repeated measure one-way ANOVA are presented
 within the figure.

1000

R7: 0.333%

1 Supplemental Figure 3 Example flow cytometry analysis for Figure 7, B and C. Epithelia

- 2 were electroporated with CRISPR/Cas9 and guide RNAs (gRNA) targeting *BSND* (g*BSND*) to
- 3 decrease the amount of ionocytes that express barttin. Cells were gated by light intensities
- 4 detected by a flow cytometer. (A) Example Figure 7B-type experiments. The gating scheme is
- 5 shown from left to right. Side scatter height (SSC-H) vs. forward scatter height (FSC-H) was
- 6 used to select for large and granular cells. FSC-width (FSC-W) vs. FSC-H was used to exclude
- 7 cellular debris and clumping. Then, cells were gated for intact plasma membranes, then barttin. (D) Σ
- 8 (B) Example Figure 7C-type experiment. The first 3 gates are as described for panel A.
 9 Additionally, cells were gated for NGFR (neuronal growth factor receptor) expression, which is
- Additionally, cells were gated for NOFR (neuronal growth factor receptor) expression, which is an basel cells and isonosytes, then $\pi 62$ was used to compute basel cells ($\pi 62^+$) from isonosytes.
- 10 on basal cells and ionocytes, then p63 was used to separate basal cells $(p63^+)$ from ionocytes
- 11 (p63⁻).

1 Supplemental Figure 4 Example flow cytometry analysis for Figure 8, B and C. Epithelia

- 2 were transduced with an adenovirus vector expressing either GFP or a vector encoding barttin,
- 3 CIC-Kb, and mCherry (Barttin + CIC-Kb OE) to add basolateral CI^- channels to non-ionocyte
- 4 airway cells. Cells were gated by light intensities detected by a flow cytometer. (A) Example
- 5 **Figure 8B**-type experiments. The gating scheme is shown from left to right. Side scatter height
- 6 (SSC-H) vs. forward scatter height (FSC-H) was used to select for large and granular cells. FSC-7 width (FSC-W) vs. FSC-H was used to exclude cellular debris. Within this gated population,
- cells were sorted for mCherry (cells expressing the viral vector) or barttin. (B) Example Figure
- 8 Solution of the solution of the
- for NGFR (neuronal growth factor receptor) expression, which is on basal cells and ionocytes,
- 11 then p63 was used to separate basal cells $(p63^+)$ from ionocytes $(p63^-)$.

- 1 Supplemental Figure 5 Controls for *FOXI1* gene disruption. (A) Genomic PCR of human
- 2 airway cells electroporated with and without gFOX11. (B) RT-qPCR of FOX11 transcript levels
- 3 in human airway cells electroporated with and without gFOXII. Many gFOXII samples did not
- 4 show amplification and a threshold cycle of 40 was used for quantification. n = 6 human donors. 5 Data points connected by a line represent paired experiments from a single human donor, graph
- 6 depicts mean \pm standard deviation, and the *P* value obtained from a paired two-sided Student's *t*
- test is presented within the figure.

Supplemental Figure 6 Controls for *BSND* gene disruption. (A) Genomic PCR of human airway cells electroporated with and without g*BSND*. (B) RT-qPCR of *BSND* transcript levels in human airway cells electroporated with and without g*BSND*. Many g*BSND* samples did not show amplification and a threshold cycle of 40 was used for quantification. n = 6 human donors. Data points connected by a line represent paired experiments from a single human donor, graph depicts mean \pm standard deviation, and the *P* value obtained from a paired two-sided Student's *t* test is presented within the figure.

8